Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Aging ; 3(10): 1237-1250, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37667102

RESUMO

Sublethal cell damage can trigger senescence, a complex adaptive program characterized by growth arrest, resistance to apoptosis and a senescence-associated secretory phenotype (SASP). Here, a whole-genome CRISPR knockout screen revealed that proteins in the YAP-TEAD pathway influenced senescent cell viability. Accordingly, treating senescent cells with a drug that inhibited this pathway, verteporfin (VPF), selectively triggered apoptotic cell death largely by derepressing DDIT4, which in turn inhibited mTOR. Reducing mTOR function in senescent cells diminished endoplasmic reticulum (ER) biogenesis, triggering ER stress and apoptosis due to high demands on ER function by the SASP. Importantly, VPF treatment decreased the numbers of senescent cells in the organs of old mice and mice exhibiting doxorubicin-induced senescence. Moreover, VPF treatment reduced immune cell infiltration and pro-fibrotic transforming growth factor-ß signaling in aging mouse lungs, improving tissue homeostasis. We present an alternative senolytic strategy that eliminates senescent cells by hindering ER activity required for SASP production.


Assuntos
Envelhecimento , Senescência Celular , Animais , Camundongos , Envelhecimento/genética , Sobrevivência Celular , Senescência Celular/genética , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição de Domínio TEA , Estresse do Retículo Endoplasmático/genética
2.
J Extracell Biol ; 2(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37744304

RESUMO

Extracellular vesicles and particles (EVPs) are secreted by organs across the body into different circulatory systems, including the bloodstream, and reflect pathophysiologic conditions of the organ. However, the heterogeneity of EVPs in the blood makes it challenging to determine their organ of origin. We hypothesized that small (s)EVPs (<100 nm in diameter) in the bloodstream carry distinctive protein signatures associated with each originating organ, and we investigated this possibility by studying the proteomes of sEVPs produced by six major organs (brain, liver, lung, heart, kidney, fat). We found that each organ contained distinctive sEVP proteins: 68 proteins were preferentially found in brain sEVPs, 194 in liver, 39 in lung, 15 in heart, 29 in kidney, and 33 in fat. Furthermore, we isolated sEVPs from blood and validated the presence of sEVP proteins associated with the brain (DPP6, SYT1, DNM1L), liver (FABPL, ARG1, ASGR1/2), lung (SFPTA1), heart (CPT1B), kidney (SLC31), and fat (GDN). We further discovered altered levels of these proteins in serum sEVPs prepared from old mice compared to young mice. In sum, we have cataloged sEVP proteins that can serve as potential biomarkers for organ identification in serum and show differential expression with age.

3.
bioRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37609272

RESUMO

Senescence is a state of indefinite cell cycle arrest associated with aging, cancer, and age-related diseases. Here, using label-based mass spectrometry, ribosome profiling and nanopore direct RNA sequencing, we explore the coordinated interaction of translational and transcriptional programs of human cellular senescence. We find that translational deregulation and a corresponding maladaptive integrated stress response (ISR) is a hallmark of senescence that desensitizes senescent cells to stress. We present evidence that senescent cells maintain high levels of eIF2α phosphorylation, typical of ISR activation, but translationally repress production of the stress response transcription factor 4 (ATF4) by ineffective bypass of the inhibitory upstream open reading frames. Surprisingly, ATF4 translation remains inhibited even after acute proteotoxic and amino acid starvation stressors, resulting in a highly diminished stress response. Furthermore, absent a response, stress augments the senescence secretory phenotype, thus intensifying a proinflammatory state that exacerbates disease. Our results reveal a novel mechanism that senescent cells exploit to evade an adaptive stress response and remain viable.

4.
Aging Cell ; 22(11): e13915, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37462262

RESUMO

Changes in the transcriptomes of human tissues with advancing age are poorly cataloged. Here, we sought to identify the coding and long noncoding RNAs present in cultured primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Using high-throughput RNA sequencing and a linear regression model, we identified 1437 coding RNAs (mRNAs) and 1177 linear and circular long noncoding (lncRNAs) that were differentially abundant as a function of age. Gene set enrichment analysis (GSEA) revealed select transcription factors implicated in coordinating the transcription of subsets of differentially abundant mRNAs, while long noncoding RNA enrichment analysis (LncSEA) identified RNA-binding proteins predicted to participate in the age-associated lncRNA profiles. In summary, we report age-associated changes in the global transcriptome, coding and noncoding, from healthy human skin fibroblasts and propose that these transcripts may serve as biomarkers and therapeutic targets in aging skin.


Assuntos
RNA Longo não Codificante , Transcriptoma , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Transcriptoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Biomarcadores/metabolismo , Perfilação da Expressão Gênica
5.
Circ Res ; 132(11): 1428-1443, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37154037

RESUMO

BACKGROUND: Few effective therapies exist to improve lower extremity muscle pathology and mobility loss due to peripheral artery disease (PAD), in part because mechanisms associated with functional impairment remain unclear. METHODS: To better understand mechanisms of muscle impairment in PAD, we performed in-depth transcriptomic and proteomic analyses on gastrocnemius muscle biopsies from 31 PAD participants (mean age, 69.9 years) and 29 age- and sex-matched non-PAD controls (mean age, 70.0 years) free of diabetes or limb-threatening ischemia. RESULTS: Transcriptomic and proteomic analyses suggested activation of hypoxia-compensatory mechanisms in PAD muscle, including inflammation, fibrosis, apoptosis, angiogenesis, unfolded protein response, and nerve and muscle repair. Stoichiometric proportions of mitochondrial respiratory proteins were aberrant in PAD compared to non-PAD, suggesting that respiratory proteins not in complete functional units are not removed by mitophagy, likely contributing to abnormal mitochondrial activity. Supporting this hypothesis, greater mitochondrial respiratory protein abundance was significantly associated with greater complex II and complex IV respiratory activity in non-PAD but not in PAD. Rate-limiting glycolytic enzymes, such as hexokinase and pyruvate kinase, were less abundant in muscle of people with PAD compared with non-PAD participants, suggesting diminished glucose metabolism. CONCLUSIONS: In PAD muscle, hypoxia induces accumulation of mitochondria respiratory proteins, reduced activity of rate-limiting glycolytic enzymes, and an enhanced integrated stress response that modulates protein translation. These mechanisms may serve as targets for disease modification.


Assuntos
Doença Arterial Periférica , Transcriptoma , Humanos , Idoso , Proteômica , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Hipóxia/metabolismo
6.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37097759

RESUMO

Senescent vascular smooth muscle cells (VSMCs) accumulate in the vasculature with age and tissue damage and secrete factors that promote atherosclerotic plaque vulnerability and disease. Here, we report increased levels and activity of dipeptidyl peptidase 4 (DPP4), a serine protease, in senescent VSMCs. Analysis of the conditioned media from senescent VSMCs revealed a unique senescence-associated secretory phenotype (SASP) signature comprising many complement and coagulation factors; silencing or inhibiting DPP4 reduced these factors and increased cell death. Serum samples from persons with high risk for cardiovascular disease contained high levels of DPP4-regulated complement and coagulation factors. Importantly, DPP4 inhibition reduced senescent cell burden and coagulation and improved plaque stability, while single-cell resolution of senescent VSMCs reflected the senomorphic and senolytic effects of DPP4 inhibition in murine atherosclerosis. We propose that DPP4-regulated factors could be exploited therapeutically to reduce senescent cell function, reverse senohemostasis, and improve vascular disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/genética , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Senescência Celular/genética , Músculo Liso Vascular/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo
7.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083495

RESUMO

Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-ß-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.


Assuntos
Fator Ativador de Células B , Senescência Celular , Humanos , Animais , Camundongos , Senescência Celular/genética , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/farmacologia , Secretoma , Envelhecimento/genética , Citocinas/metabolismo
8.
Heliyon ; 9(3): e13888, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895388

RESUMO

Studying mitochondrial respiration capacity is essential for gaining insights into mitochondrial functions. In frozen tissue samples, however, our ability to study mitochondrial respiration is restricted by damage elicited to the inner mitochondrial membranes by freeze-thaw cycles. We developed an approach that combines multiple assays and is tailored towards assessing mitochondrial electron transport chain and ATP synthase in frozen tissues. Using small amounts of frozen tissue, we systematically analyzed the quantity as well as activity of both the electron transport chain complexes and ATP synthase in rat brains during postnatal development. We reveal a previously little-known pattern of increasing mitochondrial respiration capacity with brain development. In addition to providing proof-of-principle evidence that mitochondrial activity changes during brain development, our study details an approach that can be applicable to many other types of frozen cell or tissue samples.

9.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824863

RESUMO

DNA hydroxymethylation (5hmC) is the most abundant oxidative derivative of DNA methylation (5mC) and is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in many age-related diseases, the functional role of the modification in aging remains largely unknown. Here, we report that 5hmC is stably enriched in multiple aged organs. Using the liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and thereby restricts the magnitude of gene expression changes during aging. Mechanistically, we found that 5hmC decreases binding affinity of splicing factors compared to unmodified cytosine and 5mC, and is correlated with age-related alternative splicing events, suggesting RNA splicing as a potential mediator of 5hmC's transcriptionally restrictive function. Furthermore, we show that various age-related contexts, such as prolonged quiescence and senescence, are partially responsible for driving the accumulation of 5hmC with age. We provide evidence that this age-related function is conserved in mouse and human tissues, and further show that the modification is altered by regimens known to modulate lifespan. Our findings reveal that 5hmC is a regulator of tissue-specific function and may play a role in regulating longevity.

10.
Nucleic Acids Res ; 50(22): 13026-13044, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533518

RESUMO

The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L , Desenvolvimento Muscular , Regiões Promotoras Genéticas , RNA Longo não Codificante , Transcrição Gênica , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica/genética , Inativação Gênica , Transporte Proteico/genética
12.
Aging (Albany NY) ; 14(24): 9832-9859, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585921

RESUMO

Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in many diseases. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS compared to normal individuals. By RT-qPCR analysis, we confirmed that 8 circRNAs were significantly elevated and 10 were significantly reduced in ALS, while the linear mRNA counterparts, arising from shared precursor RNAs, generally did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, a subset of the circRNAs significantly elevated in ALS muscle biopsies were significantly reduced in the spinal cord samples from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Esclerose Amiotrófica Lateral/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Superóxido Dismutase-1/genética , Transcriptoma , Camundongos Transgênicos , Superóxido Dismutase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Esquelético/metabolismo , Modelos Animais de Doenças
13.
Elife ; 112022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36259488

RESUMO

Tissue-resident macrophages represent a group of highly responsive innate immune cells that acquire diverse functions by polarizing toward distinct subpopulations. The subpopulations of macrophages that reside in skeletal muscle (SKM) and their changes during aging are poorly characterized. By single-cell transcriptomic analysis with unsupervised clustering, we found 11 distinct macrophage clusters in male mouse SKM with enriched gene expression programs linked to reparative, proinflammatory, phagocytic, proliferative, and senescence-associated functions. Using a complementary classification, membrane markers LYVE1 and MHCII identified four macrophage subgroups: LYVE1-/MHCIIhi (M1-like, classically activated), LYVE1+/MHCIIlo (M2-like, alternatively activated), and two new subgroups, LYVE1+/MHCIIhi and LYVE1-/MHCIIlo. Notably, one new subgroup, LYVE1+/MHCIIhi, had traits of both M2 and M1 macrophages, while the other new subgroup, LYVE1-/MHCIIlo, displayed strong phagocytic capacity. Flow cytometric analysis validated the presence of the four macrophage subgroups in SKM and found that LYVE1- macrophages were more abundant than LYVE1+ macrophages in old SKM. A striking increase in proinflammatory markers (S100a8 and S100a9 mRNAs) and senescence-related markers (Gpnmb and Spp1 mRNAs) was evident in macrophage clusters from older mice. In sum, we have identified dynamically polarized SKM macrophages and propose that specific macrophage subpopulations contribute to the proinflammatory and senescent traits of old SKM.


Assuntos
Macrófagos , Análise de Célula Única , Camundongos , Masculino , Animais , Macrófagos/metabolismo , Fagócitos/metabolismo , Transcriptoma , Biomarcadores/metabolismo , Músculo Esquelético/metabolismo
14.
Nat Commun ; 13(1): 6228, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266274

RESUMO

Cellular senescence is characterized by cell cycle arrest, resistance to apoptosis, and a senescence-associated secretory phenotype (SASP) whereby cells secrete pro-inflammatory and tissue-remodeling factors. Given that the SASP exacerbates age-associated pathologies, some aging interventions aim at selectively eliminating senescent cells. In this study, a drug library screen uncovered TrkB (NTRK2) inhibitors capable of triggering apoptosis of several senescent, but not proliferating, human cells. Senescent cells expressed high levels of TrkB, which supported senescent cell viability, and secreted the TrkB ligand BDNF. The reduced viability of senescent cells after ablating BDNF signaling suggested an autocrine function for TrkB and BDNF, which activated ERK5 and elevated BCL2L2 levels, favoring senescent cell survival. Treatment with TrkB inhibitors reduced the accumulation of senescent cells in aged mouse organs. We propose that the activation of TrkB by SASP factor BDNF promotes cell survival and could be exploited therapeutically to reduce the senescent-cell burden.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Senescência Celular , Animais , Humanos , Camundongos , Apoptose , Sobrevivência Celular , Senescência Celular/genética , Ligantes
15.
Nucleic Acids Res ; 50(12): 7115-7133, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736212

RESUMO

Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , MicroRNAs/genética , Desenvolvimento Muscular/genética
16.
Sci Adv ; 8(14): eabm0756, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394839

RESUMO

Cells responding to DNA damage implement complex adaptive programs that often culminate in one of two distinct outcomes: apoptosis or senescence. To systematically identify factors driving each response, we analyzed human IMR-90 fibroblasts exposed to increasing doses of the genotoxin etoposide and identified SRC as a key kinase contributing early to this dichotomous decision. SRC was activated by low but not high levels of etoposide. With low DNA damage, SRC-mediated activation of p38 critically promoted expression of cell survival and senescence proteins, while SRC-mediated repression of p53 prevented a rise in proapoptotic proteins. With high DNA damage, failure to activate SRC led to elevation of p53, inhibition of p38, and apoptosis. In mice exposed to DNA damage, pharmacologic inhibition of SRC prevented the accumulation of senescent cells in tissues. We propose that inhibiting SRC could be exploited to favor apoptosis over senescence in tissues to improve health outcomes.


Assuntos
Apoptose , Senescência Celular , Proteína Supressora de Tumor p53 , Quinases da Família src , Animais , Dano ao DNA , Etoposídeo/farmacologia , Fibroblastos/citologia , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Quinases da Família src/metabolismo
17.
Aging Cell ; 21(5): e13609, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429111

RESUMO

Changes in the proteome of different human tissues with advancing age are poorly characterized. Here, we studied the proteins present in primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Proteins were extracted from lysed fibroblasts and subjected to liquid chromatography-mass spectrometry analysis, and the expression levels of 9341 proteins were analyzed using linear regression models. We identified key pathways associated with skin fibroblast aging, including autophagy, scavenging of reactive oxygen species (ROS), ribosome biogenesis, DNA replication, and DNA repair. Changes in these prominent pathways were corroborated using molecular and cell culture approaches. Our study establishes a framework of the global proteome governing skin fibroblast aging and points to possible biomarkers and therapeutic targets.


Assuntos
Proteoma , Envelhecimento da Pele , Adulto , Idoso , Idoso de 80 Anos ou mais , Fibroblastos/metabolismo , Humanos , Longevidade , Pessoa de Meia-Idade , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Adulto Jovem
18.
PLoS One ; 17(3): e0266135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349590

RESUMO

Senescent cells accumulate with aging and have been shown to contribute to age-associated diseases and organ dysfunction. Eliminating senescent cells with senolytic drugs has been shown to improve age phenotypes in mouse models and there is some initial evidence that it may improve the health of persons with chronic diseases. In this study, we employed WI-38 human fibroblasts rendered senescent by exposure to ionizing radiation (IR) to screen several plant extracts for their potential senolytic and/or senomorphic activity. Of these, ginger extract (Zingiber officinale Rosc.) selectively caused the death of senescent cells without affecting proliferating cells. Among the major individual components of ginger extract, gingerenone A and 6-shogaol showed promising senolytic properties, with gingerenone A selectively eliminating senescent cells. Similar to the senolytic cocktail dasatinib and quercetin (D+Q), gingerenone A and 6-shogaol elicited an apoptotic program. Additionally, both D+Q and gingerenone A had a pronounced effect on suppressing the senescence-associated secretory phenotype (SASP). Gingerenone A selectively promotes the death of senescent cells with no effect on non-senescent cells and these characteristics strongly support the idea that this natural compound may have therapeutic benefit in diseases characterized by senescent cell accumulation.


Assuntos
Senescência Celular , Diarileptanoides , Envelhecimento , Animais , Dasatinibe/farmacologia , Diarileptanoides/farmacologia , Fibroblastos , Camundongos , Quercetina/farmacologia
19.
J Gerontol A Biol Sci Med Sci ; 77(6): 1130-1140, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245938

RESUMO

Aging-associated muscle wasting is regulated by multiple molecular processes, whereby aberrant mRNA processing regulation induces muscle wasting. The poly(A)-binding protein nuclear 1 (PABPN1) regulates polyadenylation site (PAS) utilization, in the absence of PABPN1 the alternative polyadenylation (APA) is utilized. Reduced PABPN1 levels induce muscle wasting where the expression of cellular processes regulating protein homeostasis, the ubiquitin-proteasome system, and translation, are robustly dysregulated. Translation is affected by mRNA levels, but PABPN1 impact on translation is not fully understood. Here we show that a persistent reduction in PABPN1 levels led to a significant loss of translation efficiency. RNA-sequencing of rRNA-depleted libraries from polysome traces revealed reduced mRNA abundance across ribosomal fractions, as well as reduced levels of small RNAs. We show that the abundance of translated mRNAs in the polysomes correlated with PAS switches at the 3'-UTR. Those mRNAs are enriched in cellular processes that are essential for proper muscle function. This study suggests that the effect of PABPN1 on translation efficiency impacts protein homeostasis in aging-associated muscle atrophy.


Assuntos
Proteína I de Ligação a Poli(A) , Poliadenilação , Regiões 3' não Traduzidas , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/genética
20.
Sci Rep ; 12(1): 364, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013429

RESUMO

RNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNAs directing numerous essential roles in cellular physiology. Nuclear Factor 90 (NF90) is an RBP encoded by the interleukin enhancer-binding factor 3 (ILF3) gene that has been found to influence RNA metabolism at several levels, including pre-RNA splicing, mRNA turnover, and translation. To systematically identify the RNAs that interact with NF90, we carried out iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) analysis in the human embryonic fibroblast cell line HEK-293. Interestingly, many of the identified RNAs encoded proteins involved in the response to viral infection and RNA metabolism. We validated a subset of targets and investigated the impact of NF90 on their expression levels. Two of the top targets, IRF3 and IRF9 mRNAs, encode the proteins IRF3 and IRF9, crucial regulators of the interferon pathway involved in the SARS-CoV-2 immune response. Our results support a role for NF90 in modulating key genes implicated in the immune response and offer insight into the immunological response to the SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Imunoprecipitação/métodos , Proteínas do Fator Nuclear 90/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , SARS-CoV-2/metabolismo , COVID-19/virologia , Células Cultivadas , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Proteínas do Fator Nuclear 90/genética , Ligação Proteica , RNA/genética , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq/métodos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...